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Abstract 
The approximation of a multidimensional function by means of tensor decompositions is 

considered in terms of storage, processing and visualization of the results of parametric cal-
culations in computational aerogasdynamics problems. An algorithm for calculating the ca-
nonical decomposition using a combination of the alternative least squares method and sto-
chastic gradient descent is described. Numerical results for interpolation of functions in six-
dimensional space obtained using the canonical decomposition are presented, demonstrating 
the high computational efficiency and quality of results. Visual representations of the results 
are provided.   

Keywords: tensor decomposition, canonical decomposition, computational fluid dy-
namics, visual representation of results.  

 

Introduction 
The treatment and the visualization of the multidimensional data is extremely difficult 

problem due to the “curse of dimensionality (exponential growth of the required computer 
memory with the expansion of the problem dimensionality). By this reason we consider the 
opportunities provided by the tensor form of the multidimensional problems and their ap-
proximation by tensor decompositions for the operations with the multidimensional data. 

As examples we consider the function ( , , , , , )f x y z u v w  defined in the domain 
6R  

and corresponding to the probability density in Boltzmann equation and the set of func-

tions 
1( , , , ... )i qf x y z   , where 1,...,i p  corresponds to the flow variables (density, veloc-

ity components, inner energy), and 1( ... ) q

q q R     correspond to the parameters of 

problem (Mach, Reynolds numbers, angle of attack, etc.). 

1. The tensor form for problems of the aerogasdynamic  
Herein we consider the tensor as a multi-way array [1,2] without discussion of the 

physical sense of tensors. In our case it corresponds to the grid function, defined on the 
regular (it is important) grid in the multidimensional space. By the gasdynamical variables 
we always imply their discrete form in this work. Thus, we consider the variables corre-
sponding an unsteady flow-field ( n  is the number of time step, p  is the number of the 

gasdynamical variable) as a tensor  

; ( , , , , )n n n n n n

p ijk ijk ijk ijk ijk ijku v w e  . (1) 

Also, we consider the ensemble of the flow-fields as the tensor  
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1 1 1 1 1 1
; ; ... ; ... ; ... ; ... ; ... ; ...( , , , , )

q q q qq q

n n n n n n

p ijk m m ijk m m ijk m m ijk m m ijk m m ijk m mu v w e
           

  , (2) 

obtained when solving the considered problem in the space of parameters 

1( ... ) q

q q R    , that corresponds to the statements typical for the generalized com-

putational experiment [3]. 
Accordingly, the operator of the solution evolution (propagator) is also tensor. In the 

simplest case (1), the propagator is the tensor of the order 8 that acts on the gasdynamical 
variables.  

1

; ; ;

n n

p ijk ps ijklmz s lmzA   . (3) 

Herein we imply the summation over repeating indexes that is not standard for the op-
erations with tensors, however, it may be convenient for our purposes.  

So, the discretizations of both the gasdynamical variables and the corresponding prop-
agators have the form of tensors. Nevertheless, this circumstance is not usually stressed 
and is not used in applications due to the huge needs for computer memory. The propaga-
tors are implicitly applied at the numerical solution of PDE (partial differential equations). 
They may be easily stated in explicit form for the single time step.  

It should be noted that the tensor form of the numerical solutions enables to compress 
and analyze the results for numerical solutions of the multiparameter problems (defined in 
the spaces of great (more than three) dimensionality). The compression of the data is per-
formed using the tensor decompositions that are the main topic of present paper.  

It is important that the tensor form enables to find nontrivial inner structures both in 
the solution and in the propagator. The simplest examples concern tensors written in the 
vectorized and matricized forms. Both vectorization and matrization provide more com-
mon and lucid forms of tensor representations and are formally valid. Symmetric matriza-
tion (natural for the propagator structure) has the form 

, , ( 1) ( 1) ; ( 1) ( 1)ijklmna a i j I k IJ l m L n LM               for the 6D space. 

The corresponding vectorization , ( 1)a a IJK        . However, one should re-

member that the transition from vectors and matrices to tensor (inverse transformation, 
tensorization) is not always feasible. For example, for the length of vectors equal to the 
simple number this operation is impossible.  

The eigenvectors and the eigenvalues (specific for the matrix algebra) appear in the re-
sult of the vectorization and matrization. These objects are not defined in the tensor form. 
However, they can reflect some inner (hidden) structure of solution and can have the non-
trivial physical sense. 

For example, in the paper [4] (concerning the atmosphere dynamics) such eigenvec-
tors correspond to the flow disturbances, which maximally grow at the selected time inter-
val (singular vectors). They may be related with the eigenvectors of the operator generated 
by the product of the forward and adjoint propagators. For this purpose, the gasdynamical 

variables are vectorized as 
Nu R  and the flow evolution is described by the propagator  

0( )u t Au . (4) 

The norm of the solution has the appearance  
*

0 0 0 0( ) ( , ) ( , )u t Au Au u A Au  . (5) 

The search for the maximally (in the selected norm) growing linear disturbances 

0( ) /u t u  at time interval t  is reduced to the search of the eigenvectors of the problem 

* 2

max max maxA A    corresponding to the maximum eigenvalue 
2

max . 

The dynamic mode decomposition (DMD) (for the unsteady Euler equations presented 
by [5,6]) may be provided as another example for implicit vectorization of the solution and 
the matrization of the propagator. In the DMD frame, the numerical solution of the aero-



 

gasdynamics problem is vectorized at time step i  and is written as 
M

iu R  (snapshot). 

The linear operator ( ) M MA t R    is assumed to exist such that 
1i iu Au  . Then the 

snapshots form the Krylov sequence 
1 2

1 1 1 1 1{ , , ,..., }N NSn u Au A u A u  . Two sequences 

1{ ... }NX u u  and 
2 1{ ... }NY u u AX  , , M NX Y R   are selected from it. Generally (in 

simplified form) these data enable to construct the approximation of the propagator 

A YX   ( X 
 is the Moore-Penrose pseudoinverse), which is written in compressed form 

as the product of the rectangular matrices  
A A

R LA  . (6) 

This form enables the radical reduction of the memory necessary for storage of the op-
erator A . This circumstance enables to use the propagator for the resolution of the set of 
interesting problems, such as the search for the singular vectors, approximation of the Per-
ron-Frobenius and Koopman operators [5,6]. 

The applicability of the tensor statements of the computational fluid dynamics prob-
lems is severely restricted by the curse of dimensionality (storage of the tensor with the 
number of indices above three requires nonrealistic memory) despite their straightforward 
form. 

However, at present, the significant progress may be observed at overcoming these dif-
ficulties that is connected with the application of tensor decompositions [7,8,9,10]. 

In the present paper we consider the feasibility of the approximation of the six-
dimensional tensors using such tensor decompositions as the canonical decomposition 
[7,8] and the tensor train [9,10] and illustrate it by the numerical experiments. The choice 
of the tensor order is related to the three-dimensional Boltzmann equation approximation, 
is not principal and does not prevent from the use of the considered algorithms for the 
parametric problems of aerogasdynamics. 

2. Some definitions of the tensor algebra  
For the further exposition we need to use rather high number of rarely used (if not to 

use term “exotic”) notations [1,11] that we present below for convenience. 
The tensor space in accordance with [1] is the tensor (outer) product 

1 2

1 ...j d
I II Id

j R R R R     of vector spaces jI
R . Herein, the symbol   notes the tensor 

(outer) product of vectors 
i j i ja b a b   (sometimes, the outer product is noted by symbol 

, in order to distinguish it from the Kronecker product). 

Tensor
1

[ ... ]
di iA a a  ((d-way array)) is the element of the tensor space. 

The tensor is described by following parameters: 

Order d  of the tensor is equal to the number of it’s indices (number of modes, di-

mensions). There is in  nodes over every index (mode) i . The order of the tensor is equal to 

the dimensionality of the space at approximation of functions. 
Size of the tensor is equal to the product of the number of nodes over all dimensions 

1 ... dn n  , corresponds to the number of memory required for the tensor storage, and 

grows exponentially ( ~ dn ) in dependence on the tensor order. 

Rank of tensor ( )rank A R  is defined as the minimum number of the layers of cores 

( )i

ra  (at fixed r  
( )i N

ra R  are the normed vectors), which is necessary for the tensor ap-

proximation in the following form (canonical decomposition)): 

(1) ( )

1

...
R

N

r r rA a a   . (7) 



 

Fiber of the tensor is the vector that is obtained at varying of one index at others 
fixed .  

The following fibers exist for three-dimensional tensor: 
: jkx  (mode-1 fiber, column), 

:i kx  (mode-2 fiber, row), and 
:ijx  (mode-3 fiber, “tunnel”). 

The following tensor operations we use or discuss. 

n –mode product of the tensor and the vector is noted using symbol n  as 

nY X v  . Every mode-n fiber is scalarly multiplied by the vector as 

1 1 1 1... ... ...

1

( )
n

n n N N n

n

I

n i i i i i i i

i

X v x v
 



  . The tensor of the less order is obtained in result. 

Product of two tensors is noted by the symbol 
p

q  and has the form 

1 1 1 1... ... ... ...q q p p

p p

q n kn q m kmZ A B A B
   

    . 

Kronecker product ( ) of the arbitrary size matrices is the generalization of the 
outer product from vectors to matrices. The element of the first matrix is multiplied by the 
second matrix in the form that follows: 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

J

J

I I IJ

a B a B a B

a B a B a B
C A B

a B a B a B

 
 
   
 
 
 

. 

The Kronecker product of matrices 
I JA R  , 

K LB R  , ;M IK N JL   
IK JLC A B R     may be written in the index form as follows: 

mn ij klc a b , ( 1)m i K k   , ( 1)n j L l   , 1... ; 1...m M n N  . (8) 

Unfortunately, as can be seen from (8), the index notation of such operations does not 
provide the lucidity that is common in the physical applications [12].  

Khatri-Rao product is usually noted by ⊙, herein, it is more convenient to use the 
symbol  . It is used for matrices with the coinciding number of the columns. Every ele-
ment of the first matrix column is multiplied by the total column of the second one. The 

result is formed as the column. For 1 2[ ... ]RA A A A , 1 2[ ... ]RB B B B  

A⊙B =
1 1[ ... ]R RA B A B  . (9) 

Hadamard product  

C A B   (
ij ij ijc a b ). (10) 

(no summation over repeating indices) is usually noted as   and corresponds the element-
wise multiplication of same dimension matrices. 

Very often it is convenient to roll out the tensor into pancake or stretch into a fiber. 
The corresponding matricization or vectorization (unfold) are performed by the following 
operations.  

Mode-n matricization of the tensor 1 ... NI IX R  
  is denoted by 

( )nX  and sets the 

mode-n fibers in the matrix column. In general case, the matrization of the tensor has the 

form of the transformation 
1,..., ,N ni i i jX m , 

1

1 1

1 (( 1) )
kN

k m

k m
k n m n

j i I


 
 

    . For 



 

, ,

I J K

i j kX R   , 1... , ... , 1...i I j i J k K   , the matrization, for example, may has the ap-

pearance 
(1) ,i mX X , 1...m M , M J K  , ( 1) ;( ... , 1... )m j k J j i J k K     .  

Vectorization unfolds the matrix 
,i mX  into the vector 

jY , 
2( 1)j I i m   . 

The matrization and the vectorization of tensors are very popular since they enable to 
use all spectrum of the linear algebra algorithms. However, their practical application at 
the tensor order above three is restricted by the curse of dimensionality. 

We are interested in the tensor decompositions by the tensors of the less order or size, 
such as  

Tucker decomposition 1 1... N NA B G G   , in the index form 

1

1

1 1 1 1 1

1 1

( ,..., ) ... ( ,..., ) ( , )... ( , )
N

N

rr

N d N N Na i i b i i g i g i
 

 
 

   

Canonical decomposition 
1 1...N N NA I G G   , in the index form 

... , , ,

1

...
R

ij N i r j r N r

r

A g g g


 . 

Tensor train 
1 1 1 1

1 2 2 3 1 1... N N N NA G G G G      , in the index form

0

1 1 0 1 1 2 1 2 2 1

,...,

( ,..., ) ( , , ) ( , , )... ( , , )
N

N N d d NA i i g i g i g i
 

        

The above notations, as a rule, are cumbersome, not transparent from the intuitive 
viewpoint, are used in very narrow domain and are unknown for the most specialists. Un-
fortunately, it is impossible to describe the current state of affairs in the tensor decomposi-
tion without these notations. However, we shall try to use more common index notations 
where it is possible or, in some events, duplicating both approaches. 

3. Canonical decomposition 

The above mentioned canonical decomposition 
1 2

1

...
R

N

r r rA Q Q Q     is written 

in the index form (for non-normed cores) as  

... , , ,

1

...
R

ij k i r j r k rA Q Q Q  (11) 

This expression is unique if not account for the permutation or scaling. The problem 

for the determination of the set of cores 
1{ ,..., }n N

r rQ Q Q  has the appearance (in the vari-

ational form)  

1 2

1

argmin ...
n

R
n N

r r r
Q

Q A Q Q Q     . (12) 

The rank of the tensor R  is the key parameter at the application of the canonical de-
composition. In accordance with [1,13] it is not computable due to the ill-posedness of the 
problem  

1 2

1

argmin ...
R

N

r r r
R

R A Q Q Q     . (13) 

The canonical decomposition suffers from instabilities and requires a regularization 
[1,13]. However, in accordance with [14] the approximation of the positive functions (such 
as the probability density) by the canonical decomposition engenders the well-posed stable 



 

statement. The oscillating behaviour of the cores was observed in the present work, also. 
However, it is not principal from the standpoint of the multidimensional functions’ ap-
proximation.  

The canonical decomposition implies the compression 
nN N n R   , where N  is 

the space dimension, n  is the number of nodes over single direction, R  is the tensor rank. 

The canonical decomposition is equivalent to DMD [5,6] 
A A

R LA   in the two-

dimensional case. 
The canonical decomposition is some extension of the Principal Components Analysis 

(PCA)) at the tensor order expansion over two (transition from matrices to the multi-way 
arrays) and also enables to reduce the dimensionality of the problem.  

4. The Tensor train 
The canonical decomposition rather often suffers from instabilities [13]. By this rea-

son, the attempts to find alternative decompositions are natural. The tensor train (TT) 
format [8] is one of such attempts. The works exist ([9]) that state that the tensor train is 
more stable if compare with the canonical decomposition.  

The Tensor train (TT) enables to write the d -way 1 2 ... dn n n    tensor A  in the 

form 

0

1 1 0 1 1 2 1 2 2 1

,...,

( ,..., ) ( , , ) ( , , )... ( , , )
d

d d d d dA i i G i G i G i
 

       , (14) 

where 
kG  are the cores of the size 

1k k kr n r   , 1,...,k d , 0 1r  , 1dr  . 

The tensor train is not unique transformation since it is invariant regarding the trans-

formation 
' ( ) ( )k k k kG i G i S , 

' 1

1 1 1 1( ) ( )k k k kG i S G i

    . 

The tensor train provides less compression 
2nNr , if compared with the canonical de-

composition. 
The tensor train is an interesting alternative to the canonical decomposition. The com-

parison of the tensor train and the canonical decomposition is interesting both from the 
viewpoint of the stability of results and the computational efficiency. We hope to perform 
the corresponding comparison in future works. 

5. The methods for the tensor decomposition calculation  
The methods for the tensor decomposition calculation may be divided into two sub-

classes: the methods which are based on the linear algebra, for example [9] and the varia-
tional methods [6,7].  

The linear algebra based methods significantly apply tensor matrization, singular de-
composition and contain a lot of interesting and original algorithms that enable to execute 
operations on cores without appealing to approximated functions.  

The variational statements, as a rule, are based on alternating least squares (ALS)) 
[15,16], however, the matrization of tensors is also used. 

The utilization of the tensor matrization is, by our opinion, the weak point of both ap-
proaches, since it requires a huge memory. 

However, we believe that the variational methods may be relieved from this drawback. 
By this reason, herein we use certain combination of alternating least squares and the sto-
chastic gradient descent (SGD) [17,18,19], which will be described below. Roughly speak-
ing, we minimize the discrepancy on the single randomly selected fiber using ALS, that en-
ables us to resolve one-dimensional problem with the moderate requirements to memory 
at every step. 



 

5.1 The method of alternating least squares  

The alternating least squares (ALS) method [15,16] is commonly used at the search for 
the tensor decompositions and enables optimization of the single parameter while others 
are fixed. For the canonical decomposition ALS is realized by Khatri-Rao product, usually, 
for three-dimensional problems. For the case of our interest (multidimensional) [19,20] 

cores kQ  are determined by the consequent solution of the following problem  

2

( ) 1 1 1argmin ( ... ... )
k

T

k k k k k N
Q

Q A Q Q Q Q Q        . (15) 

Herein 
( )kA  is the mode- k matrization of the tensor, 

1 1 1( ... ... )T

k k k dQ Q Q Q Q       is the auxiliary matrix of the same dimensionality. One 

may obtain the elegant expression for the minimum of (15) 

( ) 1 1 1(( ... ... ) )T

k k k k dQ A Q Q Q Q 

       , (16) 

which enables the estimation of the core by the matrix algebra methods. 
In the general case (at a variation of all parameters), the convexity is not guaranteed 

and the gradient descent is not obliged to converge. The fixation of the main part of pa-
rameters and the variation of the single core enable to obtain the convex goal functional 
and to optimize it with success. The low rate of the ALS convergence is the cost of the rela-
tive universality of the method.  

The approach to the canonical decomposition calculation using expressions of Eq. (16) 
kind dominates at present. Unfortunately, this approach is not applicable for our purposes, 
since it uses the tensor matrization, which requires the same memory as the tensor itself. 
The memory, which is necessary for the problems of considered class, is above the range of 

modern computers parameters (in this paper we use tensors, formally containing 
1210  

numbers), that excludes the application of the tensor matrization. 

5.2 Stochastic gradient descent 

The stochastic gradient descent (SGD) is widely used in the problems of high dimen-
sionality [17,18,19]. Paradoxically, it enables to find the point of the functional minimum in 
the space of the control parameters for less time than it takes to fully calculate this func-
tional to. This occurs since the local functional (on single random point or small set of 
points (minibatch) is computed instead the global (batch) functional (12) that requires 
huge time for computation. Rather often SGD is used in a combination with ALS in order 
to overcome difficulties caused by huge memory requirements at the Khatri-Rao product 
application [17,18].  

In our case we use the functional computed on the single randomly selected fiber i  (

1...i in N  at other fixed indices) or a small set of such fibers. Corresponding algorithm is 

described in the Section that follows in details. 

6. The numerical algorithm for the canonical decompo-
sition 

As we stated above, our approach corresponds to some combination of the stochastic 
gradient descent (in minibatch variant) and alternating least squares method. We present 
it in details for the single fiber case (the case for the set of fibers may be obtained by simple 
summation of the discrepancy and the gradient) since we failed to find the description of 
this algorithm in publications. We consider the six-dimensional case and the following ap-
proximation  



 

1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
R

x y z u v w

ijklmpf Q i Q j Q k Q l Q m Q p


     


      . (17) 

At the beginning, we determine the first core ( , )xQ i  related with the coordinate x . 

Other cores are determined consequently and the corresponding expressions may be found 
by the cyclic change. 

We select a fibre along x  ( 1... xi N ) by the random uniformly distributed choice of 

other indices , , , ,j k l m p .  

Let’s consider the discrepancy along this fibre obtained by summation over i  of the lo-
cal (point-wise) discrepancies  

2( ) { ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) } / 2
xN

x x y z u v w

ijklmp

i

Q Q i Q j Q k Q l Q m Q p f


              . (18) 

Here 
ijklmpf  is the exact magnitude of the function at the point , , , , ,i j k l m p  that is 

known beforehand (in the present work from the analytic expressions for the test func-
tions). In accordance with the ALS approach, the discrepancy is considered to depend on 

the single core ( , )xQ i . Let’s disturb this core by ( , )xQ i . The corresponding disturb-

ance of the discrepancy has the form  

{( ( ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) )x y z u v w

x ijklmp

i

Q i Q j Q k Q l Q m Q p f


                 

( ( , ) ( , ) ( , ) ( , ) ( , ) ( , ))}x y z u v wQ i Q j Q k Q l Q m Q p


           . 
(19) 

Let’s choose ( , )xQ i , which is not equal to zero only at single point i , that free us 

from summation over i  in (19). Then, one may extract the corresponding value of the gra-
dient in form: 

, , ( ( ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) )x y z u v w

x i ijklmpQ i Q j Q k Q l Q m Q p f


                

( ( , ) ( , ) ( , ) ( , ) ( , ))}y z u v wQ j Q k Q l Q m Q p        . 

(20) 

The defect of expression (20) if compared with ALS methods, using the Khatri-Rao 

product (16), is the impossibility of the direct use of condition 
, , 0x i   (since the 

sought value ( , )xQ i  is summated over  ) for calculation of cores. The merit of expres-

sion (20) if compared with (16) is the economy of the memory (matrization is not used). 

The regularized term ( , )xQ i   should be added to (20) if the zero order Tikhonov 

regularization (
2( ( , ))xQ i  ) is used.  

The steepest descent iterations that minimize the functional (18) over the core 
xQ  el-

ement at point ,i  have the form  
1

, ,{ ( , )} { ( , )}x n x n

x iQ i Q i        , (21) 

where   is the iteration step.  
Iterations on the single core and selected fibre are performed until relaxation. The dis-

crepancy over selected fibre (18) was used as the stopping criterion. Iterations terminated 

at 
9 13

1 10 10      . 

We proceed to the next core using a new randomly selected fibre past stopping itera-
tions on the current core. The form of the gradient is obtained by permutations in the sec-
ond term of (19) while the sum in (18) depends on the chosen fibre.  



 

We proceed to the next step of the global iteration (from the new values of cores) and 

again start the search for the optimal cores from 
xQ  past all cores are locally optimized. 

Formally, the quality of the function approximation by the canonical decomposition at eve-
ry step of the global iteration may be estimated via the discrepancy that follows  

2

, , , , ,

{ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) } / 2x y z u v w

total ijklmp

i j k l m p

Q i Q j Q k Q l Q m Q p f


              . (22) 

Unfortunately, this functional is nod directly computable (at least on usual personal 
computers) due to the problems with dimensionality and the great demands for computer 
time. We numerically estimated its value using the Monte-Carlo method used in the form  

2

1

1
{ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) }

2

s MC
x y z u v w

total ijklmp

s

Q i Q j Q k Q l Q m Q p f
Mc 

      




        , (23) 

where at every step of summation s  every index from , , , , ,i j k l m p  was chosen as the ran-

dom uniformly distributed number. In result, we computed the averaged over the ensem-
ble sum of the approximation error squares. The number of trials in the ensemble was in 

the range 1000 100000MC   . The results varied rather weakly at the change of MC .  
The optimization of all cores (and the total process of the canonical decomposition 

generation) stopped at 
2total  , 

5 7

2 10 10    . 

In general, the combinations of ALS and SGD are rather widespread [17,18], however, 
in all known to authors events they use the Khatri-Rao product. The approach, presented 
here, does not use the Khatri-Rao product in any form, but is based on a direct numerical 
differentiation of the discrepancy, which is defined on the single fibre, and the gradient de-
scent. By this reason, neither tensor matrization nor cores product in the Khatri-Rao form 
are not used, that enables the radical reduction of the memory requirements. The increase 
of the number of iterations necessary for the problem solution is the cost of this success. 
Fortunately, it does not lead to the sensible consequences for the considered problems, 
since the computation time for the considered problems on the personal computer (Intel 
I5, 2.66 GHz) remains in the limits of the several minutes. 

7. The results of numerical tests 
In the results of calculations we obtain the approximation of the six-dimensional func-

tion f  (more correctly, the tensor 
ijklmpf , corresponding the values of the function in the 

nodes of the regular grid) using the canonical decomposition and the corresponding set of 

cores ( , ) ( , ) ( , ) ( , ) ( , ) ( , )x y z u v wQ i Q j Q k Q l Q m Q p          .  

The grid containing 100 nodes on every coordinate was used in numerical experi-

ments. Formally, the storage of 
ijklmpf  on such grid requires 

1210  cells of memory that is 

not realistic neither from the viewpoint of storage nor from the viewpoint of the visualiza-
tion. We mark that the memory necessary for cores with the rank 100 requires 

6 100 100 60000    cells, which illustrates super high compression of the information (
7~10 ) at application of the canonical decomposition. 

The comparison of the numerical (obtained by the direct numerical differentiation) 
and analytical gradients (obtained by expression (20)) was performed during debugging 
and demonstrate their practically complete coincidence. 

Formally, the quality of the approximation of the function by the canonical decomposi-
tion may be estimated using discrepancy (22), but it was estimated using Monte-Carlo 
method (23).  

The results of computations provide sufficiently stable and reproducible error estima-
tions.  



 

The numerical tests were performed using the authors’ codes written in Fortran-95 
specifically for the considered problems. 

7.1 The test problems 
The tests of the approximation of different functions by the canonical decomposition is 

performed. The quality of the approximation (17) is of interest at testing both from the 
viewpoint of visual presentation and from the value of the discrepancy (23). The determi-
nation of the real rank of the function and the convergence rate are of interest. The corre-
sponding data are presented in this Section. The six-dimensional functions of the different 
rank of the tensor presentation are selected. This enables to estimate not only the quality 
of the approximation but also the possibilities for the estimation of the rank for the func-
tions under consideration. The following multidimensional functions are considered that 
are situated in the order of the complexity (canonical decomposition rank) increasing.  

1. The product of vectors  

f x y   (25) 

It is the simplest function with the rank of the tensor equal unit. Single fibre, approxi-
mating rank of cores in the range from 1 to 10, 30 iterations are used. The dependence of 
discrepancy on the rank is provided in Table 1.  

 
Table 1. The dependence of discrepancy (23) on the rank in (17) for the function (25)  
rank 1 2 3 4 5 10 
discrepancy 
(23) 

143.27 10  
62.78 10  

54.61 10  
63.34 10  

42.44 10  
41.63 10  

 
These results show that the magnitude of the discrepancy may serve as the indicator of 

the true rank of the tensor. The noise in the results increases as the rank rises, obviously, 
this reflects the instabilities occurring at the rank estimation arising due to the ill-
posedness of this problem for the canonical decomposition [1,13]. The results of the com-

putations ( ( , )f x y ) are presented in Fig. 1 (exact function) and Fig. 2 (approximation, 

rank 5).  
 

  
Fig. 1 Exact function (25) Fig. 2. Approximation of function (25), rank 5 

 
2. The sum of vectors  

f x y   (26) 

It is also very simple function, but it’s rank a priori is unknown and it would be desira-
ble to estimate it in computations. Single fibre, rank in the range from 1 to 10, 30 iterations 
are used. The dependence of the discrepancy on the rank is presented in Table 2. 
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Table 2. The dependence of discrepancy (23) on the rank in (17) for the function (26)  
rank  1 2 3 4 5 10 
discrepancy 
(23) 

24.87 10  
21.12 10  

58.67 10  
58.02 10  

41.5 10  
42.03 10  

 
This function has the rank 3÷4 if the minimum of the discrepancy is analyzed. Fig. 3 

presents the exact function, Fig. 4 presents its approximation (rank 5), one may mark the 
sufficient coincidence.  

 

  
Fig. 3. The exact function (26) Fig. 4. The approximation of function (26) 

 
3. The sum of sines  

sin( / 20) sin( / 20)f x y   (27) 

It is the two-dimensional function in the six-dimensional space that is visually signifi-
cantly more complex if compare with (25) and (26). The calculations demonstrates the 
rank of this function to be about 10. The results of computations are presented in Fig. 5 

(exact function) and Fig. 6 (approximation, rank 10, 1 fibre, 
45 10   , 13 iterations).  

 

  
Fig. 5. Exact function (27) Fig. 6. The approximation of function (27) 

 
4. Two-dimensional product of sines  

sin( / 20) sin( / 20)f x y   (28) 
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It is also two-dimensional functions in the six-dimensional space, it is the multiplica-
tive analogue of (27). The rank of this function is about 10. Results of computations are 

provided in Fig. 7 (exact function) and Fig. 8 (approximation, rank 10, 1 fibre, 
57 10   , 

30 iterations).  
 

  
Fig. 7. The exact function (28) Fig. 8. The approximation of function (28) 

 
The previous tests were performed in the six-dimensional space over the two-

dimensional functions and demonstrated enough fast convergence (10-30 iterations) and 
low values of the discrepancy. Further we consider truly multidimensional problems that 
require greater number of iterations and demonstrate greater discrepancies. 

5. The Gaussian in the multidimensional space  
Let’s consider the function in the multidimensional space that is described by the fol-

lowing equation  

0.001 (( 50) ( 50) ( 50) ( 50) ( 50) ( 50))rad ix iy iz iu iv iw            
2exp( )f rad   

(29) 

Formally, this function is defined in the six-dimensional space, but, really, it is one-
dimensional (depends only on the radius) and is determined by the product of vectors, so 
it’s rank equals unit. Table 3 presents the dependence of discrepancy on the rank for the 
function (29)  

 
Table 3. The dependence of discrepancy (23) on the rank in (17) for the function (29)  
rank 1 2 3 4 5 10 
discrepancy 
(23) 

135.31 10  
76.92 10  

62.78 10  
46.74 10  

53.91 10  
35.13 10  

 
30 iterations and 1 fibre are used. The complete coincidence of function and its ap-

proximation is observed for the rank 1. The noise in results grows and the accuracy de-
creases (discrepancy grows) as the rank increases.  

Thus, the estimation of the exact rank of function is necessary and the calculations for 
the greater rank (“with the reserve”) may not provide the necessary quality.  

 

(3D)  25 Mar 2022 2D CP

-1

-0.5

0

0.5

1

fu
n

e
x
a

c
t

0

20

40

60

80

100

x

0

20

40

60

80

100

y

X Y

Z

(3D)  25 Mar 2022 2D CP
(3D)  25 Mar 2022 2D CP

-1

-0.5

0

0.5

1

fu
n

c
o

re

0

20

40

60

80

100

x

0

20

40

60

80

100

y

X Y

Z

(3D)  25 Mar 2022 2D CP



 

  

Fig. 9. The exact function (29) 
Fig. 10. The approximation of function (29), 

rank 5. 
 
6. The sum of sines  

sin( / 20) sin( / 20) sin( / 20) sin( / 20) sin( / 20) sin( / 20)f x y z u v w       (30) 

It is the most difficult for calculations variant that is truly six-dimensional. The rank of 
this function is about 200 as will be demonstrated in the next Section. The calculations for 
this variant converge rather slow (about 300 iterations) and require a great enough rank. 
Figs. 11 and 12 demonstrate results for 10 fibres and rank 200 in the plane ,x y , the dis-

crepancy 
43 10   . Other variables correspond to the centres of the intervals on the grid 

100 ( 50iz iu iv iw    ). 
 

  

Fig. 11. Exact function (30) 
Fig. 12. The approximation of function (30), 

rank 200 
 

7.2. Iteration convergence criteria 
Fig. 13 presents the behaviour of different convergence criteria in the dependence on 

the number of iterations for the function (27). The discrepancy over the fibre (eps_fibre), 
global discrepancy estimated by Monte-Carlo method (eps_MC), and the norm of the gra-
dient of discrepancy (grad norm) are provided. The increasing of the discrepancy at transi-
tion to the next global step (rank values refreshing) was permitted in the variant of the op-
timization, illustrated by Fig. 13  
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Fig. 13. Different criteria of convergence in dependence on the number of iterations. 
 
The present variant of the optimization does not provide the monotonic convergence, 

although, the minimization is observed for the simple enough functions. The local conver-
gence (summation on the fiber) occurs at every step of the global iteration. The conver-
gence of the gradient norm is not observed. Slow and nonmonotonic convergence of the 

global discrepancy (the difference between the exact and approximate solutions in 2L  

norm, estimated by Monte-Carlo method (23)) is observed.  
The transition to the variant of the minimization, which prohibits the increase of dis-

crepancy at the transition to the next (random) set of fibres (at the next step of the global 
iteration) was used for more complex functions. Actually, the gradient optimization at cer-
tain moment is replaced by the stochastic search over fibres in this version of the algo-
rithm.  

One may conclude from the intuitive viewpoint that the utilization of several fibres in-
stead single one (minibatch) should improve the monotonicity of the convergence. Howev-
er, the numerical experiments demonstrated that, starting from certain moment, it spoils 
the convergence rate and the achievable value of discrepancy. Fig. 14 presents the results of 
the convergence for 1 and 5 fibres for function (27). 

 

 
Fig. 14. The logarithm of the discrepancy (23) in dependence on number of iterations for  

1 and 5 fibres. 
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7.3 Rank of the decomposition 

The numerical estimation of the tensor rank was obtained by viewing the results over 
the rang magnitude at the solution of the variational problem (23). It was assumed, that 
the discrepancy should decrease as the rank expanses as it is usually observed in calcula-
tions. However, for some simple functions the opposite behavoiur is demonstrated. For ex-
ample, the minimum of the discrepancy occurs at unit rank for the multidimensional 
Gaussian (29). The expansion of the rank increases the discrepancy. 

The dependence of discrepancy logarithm on the rank is presented in Fig. 15 (1 fibre, 
300 iterations) for the function described by the Eq. (30).  

 

 
Fig. 15. The dependence of the discrepancy on the rank for function (30) 

 
The dependence of the discrepancy on the rank value is enough nonmonotonic for this 

function. Nevertheless, the rank expansion decreases the discrepancy. Thus, the rank 
should be adapted for discrepancy diminishing at calculations. The simplest variant (the 
run over expanding number of the ranks) is used herein. However, the solution of the 
problem in the consequently expanding space is rather costly. So, the search for more suit-
able algorithm for the rank estimation is necessary despite the available principal difficul-
ties [13].  

Fig. 16 presents the core ( , )xQ i  for function (30), rank is equal 100. Fig. 17 presents 

core ( , )xQ i  for function (30) for rank 250. The oscillating character of the core is ob-

served. No damping at the expansion of the rank is observed, although, the accuracy of the 
approximation increases.  

The difficulties with the determination of the rank in canonical decomposition stimu-
late the investigation of other tensor decompositions, the tensor train in particular.  

 

  

Fig. 16 ( , )xQ i , rank 100 Fig. 17 ( , )xQ i , rank 250 
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Discussion 
If the initial approximation of the cores is chosen as constants, for example 

( , ) 1mQ i  , all magnitudes of gradients for different   automatically coincides (19) and 

the optimization process fails. So, the expression ( , ) 1 ( )mQ i N    was used for the ini-

tial approximation of cores (the random normally distributed value with dispersion   was 

used). Naturally, there is no convergence at 0  . The instabilities were observed at the 

great 10  . The optimal magnitude is 0.1  , which was used in all above described 
tests.  

The obtained results depend on the random selection of the fibres and on the noise in 
the initial approximation of cores that partly make difficult comparison at debugging and 
the search for the optimal parameters for the algorithm installation. The fixation of the 
start point of the random number generator and storing the sequences of fibre coordinates 
(used at optimization) enables the stabilization of results. 

Due to the problem ill-posedness [13] the zero order Tikhonov [21] quadratic regulari-
zation is provided. However, the dumping of the oscillations at calculation of cores caused 
the break of the approximation in numerical tests. So, the positive influence of the regular-
ization was not observed and the above provided numerical tests correspond to the ab-
sence of the regularization. The ill-posedness of the canonical decomposition does not have 
an influence in the frame of approximation of functions. In the frame of the solution of the 
evolutional problems in partial differential equations (PDE) [10] the stability of the tensor 
decomposition is useful since it enables to perform some part of evolution in the space of 
cores without returning to the space of functions. The possibility of the evolution in the 
space of cores is provided in the frame of tensor train [9]. There exists the set of operations 
including special TT-rounding operation, which enables to reduce the rank of the approx-
imation past several steps. It explains the significant interest to the tensor train format. So, 
the instability at the level of the determination of cores is not insurmountable obstacle at 
the simulation of PDE at spaces of the high dimensionality. Nevertheless, the transition to 
the more stable statements (tensor train) may enable to obtain more fast algorithms.  

There exists the coincidence of numerical and analytical gradients, but the analytical 
calculation is faster about two order of the magnitude at the considered problem. It is re-
lated with the circumstance, that disturbance of the discrepancy (18) should be computed 
for any element of the core at the numerical calculation of the gradient. The need for this 
operation (and in summation over the coordinate) is absent at the analytical computation 
(20).  

The plausible idea that the transition from the single fibre to several ones provides 
more stable optimization failed in calculations. This transition slows down the convergence 
rate and deteriorates the quality of optimization (increases the value of the reachable dis-
crepancy).  

The numerical tests show that the tensor rank strongly depends on the kind of the ap-
proximated function.  

As far the rank increases the noise in the result rises, so the choice of the rank value 
“from above”, which partly simplifies the algorithm, may cause the deterioration of the re-
sults.  

The tensor decompositions are actively used for the visualization purposes since they 
enable to build the easily computable model, which approximate the difficult data set in 
the space of parameters. For example, papers [22,23] use tensor train format and the cross 
approximation for these purposes.  

The tensor decompositions (canonical decomposition, tensor train, hierarchical Tuck-
er) are used for the economic solution of the multidimensional problems of the Boltzmann 
equation type [7,8,10]. 



 

The canonical decomposition enables to efficiently approximate and store the multi-
dimensional functions. The computer time cost for the operations with the functions in the 
six-dimensional space (at using 100 nodes along each coordinate that formally requires 

storage and operations with 
1210  numbers) takes 2-3 minutes of the personal computer 

(processor Intel I5, 2.66 GHz) at memory requirements for cores store about 
510  numbers. 

Conclusion 
The applicability of the tensor statements of the computational fluid dynamics prob-

lems is restricted by the “curse of dimensionality”. Fortunately, the application of the ten-
sor decompositions provides some hope for its overcoming.  

The algorithm is offered that unifies the alternate least squares and the stochastic gra-
dient descent and requires the memory, which is far less if compared with the methods us-
ing Khatri-Rao product.  

The numerical experiments demonstrate that the application of this algorithm for the 
canonical decomposition enables storing and visualization of functions in the multidimen-
sional space with the very moderate costs from the standpoint of the memory and the time 
of computation. The results of the visualization of the performed numerical experiments 
are provided. 
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